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1 Introduction

The 2011 Intelligent Ground Vehicle Competition provides the robotics community at the University of Waterloo

with a unique opportunity to learn, practice and explore the design and implementation of advanced unmanned

systems. As the proliferation of unmanned systems becomes a requirement in several different industries, com-

petitions such as IGVC provide the testing grounds required for the team to prepare for participation in the

unmanned systems industry. With this in mind the University of Waterloo team set out to design and build a

versatile, dependable and novel solution to the autonomous systems problem posed by IGVC. The result, Indrik

(named after a magestic beast in Russian folklore) is presented in this report.

1.1 Design Innovations

The team has implemented some distinctive innovations for the problem presented in the IGVC competition.

These include:

• Chassis: A new, custom-designed chassis was fabricated with manoeuvrability, versatility and dependability

as the design focus. This has led to a double-wishbone independent suspension design (shown in Figure 1).

The vehicle can carry payloads of upto 300lbs for long distances, over challenging terrain be it dirt, mud,

water, gravel, rocks or snow. More details of this design can be found in Section 2.1.

• Omni-Directional Movement: Mecanum wheels are employed in this year’s design due to their ability to

slip at certain angles which allows for lateral and diagonal movement of the robot. The slip created by

the rollers on these wheels allows for a movement in any direction, thereby minimizing yaw rotations and

enhancing the ability to elegantly traverse a terrain and move through a set of obstacles. We can also

switch between a highly manoeuvrable omni-wheel design and a traditional skid-steer design on the go.

More details of this design can be found in Section 2.1.

• Tilting 3D LIDAR system: In order to sense the 3D terrain and avoid obstacles placed in the robot’s path,

we have employed a tilting mechanism for the LIDAR which provides us with a 3D point cloud of the scene

in front of the robot (shown in Figure 4). For more details on the sensor see Section 2.3, details on the

mapping software can be found in Section 3.1

• Planning: The team has also developed and extended a novel planning algorithm based on probabilistic road

maps. This allows the platform to plan robust 3D trajectories taking full advantage of the omni-directional

movement. The planning software has been extended for use in platforms that employ omni-wheel and/or

skid-steer, as described in Section 4.

1.2 Design Process

After a comprehensive assessment of the competition requirements the team decided to focus their efforts on six

points of design and implementation;

• Mechanical Chassis Design

• 3D Mapping

• Vision software

• Path planning

• Estimation and Control

• Systems Integration

Wherever possible the team has attempted to leverage off of dependable existing solutions for parts of the

problem. This includes work in sensor driver development, high level software management (operating systems,

process management etc.) and low-level motor control. This has allowed the team to focus the limited human

resources onto the six aspects of the design shown above. ROS (robot operating system) is a popular open-source

meta operating system platform that was leveraged by the team for sensor drive development, high level software
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management and basic 3D occupancy grid software. The low-level motor control was abstracted by a pair of

Roboteq HDC2450 motor controllers. The remaining aspects of the platform have been comprehensively designed

by the team over a period of four months in an iterative fashion with frequent design overview meetings to ensure

the design stays cohesive and meets all the requirements.

1.3 Design Team and Organization

The team consisted of six core undergraduate and graduate team members with various other members of the

University of Waterloo Robotics team aiding wherever possible. Overall, over 1000 person-hours has been spent

on both hardware and software for this year’s entry. The breakdown of the design tasks is shown in Table 1

Table 1: Design Task Breakdown

Team Member Design Task

Yan Ma Vision Systems

Arun Das Team Lead, 3D Mapping and System Integration

Peiyi Chen Path Planning

Siddhant Ahuja Mechanical Design, Vision Systems and System Integration

Kent Stoltz Mechanical Design and Fabrication

Prasenjit Mukherjee Estimation, Control and System Integration

The team would also like to acknowledge Kevin Ling for his contributions in making the systems JAUS

compliant. Design advice and direction was provided by the team advisor Prof. Steven Waslander.

2 Hardware Design

In terms of mechanical design, the team decided to focus on reducing the effect of vibrations on the structural

components and also the sensors themselves. An independent double-wishbone suspension with adjustable rising

rate spring set-up and variable damping rates was selected as the preferred, off-road capable design. A detailed

design of the robot’s suspension, drive-train and chassis are given in Section 2.1. A complete electrical system is

discussed in Section 2.2, followed by a description of the sensor suite in 2.3. An overall list of components used

on Indrik and their respective costs are shown in Table 2.

2.1 Mechanical Design

Indrik was fully designed using Autodesk Inventor CAD software before any parts were fabricated. Wherever

feasible, Finite-Element Analysis (FEA) was conducted to ensure a minimum safety factor of 2 . The chassis is

made of 5/8” 4130 Chrome Moly square tubing which has a higher strength to weight ratio. Indrik measures 34”

wide, 41” long, and 70” tall; and weighs approximately 300 pounds excluding the payload. A CAD visualization

of the robot featuring an independent double un-parallel A-arm suspension is shown in Figure 1.

Power-train

Based on the power requirements, custom made brushed DC motors with rear shaft mounted quadrature encoders

were purchased from Midwest Motion Products. To determine the final gearbox ratio and wheel diameter, an

analysis of the motor curve was performed. It was assumed that there exists an equal weight distribution on each

wheel (about 75 pounds), the gearbox efficiency is 75% and the standard backlash is 33 arc min. Therefore, in

order to produce a continuous torque of 75 pounds-inch, a 14:1 gear ratio was required. To maintain a speed of

10 mph in competition with the selected gear ratio, 10” diameter wheels each driven by their own motors with

1:1 chain drives were selected. This configuration provides for quick acceleration/deceleration and enough safety
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Table 2: List of Costs for Building Indrik. All zero-cost items were donated.

Item Actual Cost Team Cost

NovAtel OEMV-3 GPS $10,1000.00 $0.00

2x SICK LMS-111 LIDAR $6,000.00 $3,000.00

2x Hokuyo LIDAR $4,500.00 $0.00

4x Logitech QuickCam Cameras and 1x PointGrey Camera $900.00 $200.00

MicroStrain IMU $2,000.00 $0.00

Computers $3,800.00 $0.00

Motors and Motor Controllers $3,294.00 $3,294.00

Chassis and Suspension Components $5,000.00 $5,000.00

Mecanum Wheels $850.00 $850.00

Misc. Mechanical Components $1,000.00 $1,000.00

Batteries and Battery Chargers $1,650.00 $1,650.00

Misc. Electrical Components $500.00 $500.00

Ethernet Router and Switch $150.00 $0.00

TOTAL $39,644.00 $15,494.00

(a) Isometric View (b) Side View (c) Front View

Figure 1: Indrik : 3D CAD Visualization

margin for torque loading. For robustness and easy maintenance, a chain-sprocket drive connected to telescoping

U-Joints was selected.

Suspension

One of the main objectives of a suspension system is to ensure that the wheels maintain a close contact with

the ground with a maximum tire contact patch in any driving situation. After considering many options such

as MacPherson struts, trailing links, swing axle designs etc., a double un-parallel A-arm suspension design was

selected with a rake of 12 degrees from the horizontal. This provides better transmission of shock forces when the

vehicle lands after jumps and when approaching steep inclines. The shock absorption is supplied through four

independent Fox Air DHX 5.0 shocks with 3.0 inches of travel. Air shocks provide significant advantages over

coil-over systems in terms of weight reduction, increased travel and adjustable spring and damping rates. The

A-arms were fabricated with 5/8” 4130 chromoly tubing, which is a strong, lightweight, and workable material.

This adds durability to the suspension, thus improving the reliability and safety of the vehicle. A finite element

analysis was conducted in AutoCAD Inventor in order to ensure a safety factor well above 2 for both front and

rear. The stress plot of the shock loading analysis can be seen in Figure 2.
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Figure 2: Finite Element Analysis for Bottom A-Arm under 20psi shock load.

In order to reduce the amount of body roll during cornering, the distance between the center of mass (COM)

of the vehicle and the roll center was reduced, which enables the use of softer shock absorbers. The four bar

linkage analysis of the system and location of instantaneous centers along with the COM and Roll Center is

presented in Figure 3.

Figure 3: Locating the roll center.

2.2 Electrical and Computer Systems Design

In order to guarantee safe operation of the motors and related circuitry during high-current demands, Roboteq’s

HDC2450 motor controllers were selected which can provide up to 150 amps on each channel, capable of driving

two motors simultaneously. It has a built-in closed loop speed control which integrates well with our algorithms.

All of the sensitive onboard electronics are shock-isolated with rubber padding and passive air-cooling is employed

for heat dissipation. The platform is powered by two 24V, 30A-h custom built LiPo packs capable of discharging

at a continuous rate of 45C. A DC-DC Converter is used to supply low-level controllers and some sensors with a

regulated 12V and 5V supply.

Due to the near real-time performance requirements for the software algorithms and computationally intense

calculations, Indrik requires one embedded computer dedicated to sensor data processing and analysis, one

computer for vision algorithms, and one computer for supervisory control , navigation, and interfacing with other

low-level controllers. Two Toshiba Tecra laptops boasting a dual core Intel i7 processor (2.66 GHz Processor), 4

GB of RAM and a 128GB solid state hard drive are utilized. The solid state hard drive was selected to eliminate

hard drive failure due to vibration and shock, which is common among standard hard drives. The embedded

computational platform is an ADLink embedded Intel i7 dual core industrial computer, with 2GB of RAM and
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a 30 GB solid state hard drive. The system also includes a gigabit ethernet switch and 802.11n wireless access

point in order to enable high-speed data transfer between the sensor nodes and computers. This feature is useful

for outdoor testing and for satisfying the JAUS challenge requirements.

2.2.1 Safety

Indrik can be stopped on command by manually activating the hardware emergency stop (”E-Stop”) system

which brings its motors to a complete halt. It is bright red in color and located on the center rear of the vehicle

at a distance of about 2.5 feet from the ground. It can also be stopped by a wireless E-stop with an effective

range of atleast 100 feet. In addition a safety light has been included on top which flashes when the robot

is in autonomous mode and becomes solid when its not. All sensors, motor controllers and critical electronic

equipments have been protected by circuit breakers and fuses ensuring safe operation.

2.3 Sensor Suite

For this competition the selected sensors facilitate the vehicle’s ability to perceive its environment, and localize

itself within that environment. The sensor suite includes a vision system, a state measurement system and

LIDAR scanning system. The vision system consists of a cluster of two Logitech Quickcam 9000 Pro cameras

and one PointGrey Firefly camera. These are primarily used for white line and flag detection, with the Firefly

pointing forward for high speed imaging of the most interesting elements of the environment, and the Quickcams

focused on line detection and lateral obstacle detection. The state measurement system consists of motor shaft

encoders, which provide shaft rotation rate, a Microstrain 3DM-GX3 AHRS sensor, which provides accurate

attitude estimates of the vehicle, and the NovAtel OEMV-3G GPS sensor, which provides information on the

vehicle’s spatial location and ground speed.

Figure 4: SICK LMS111 laser scanner mounted on tilting platform.

The LIDAR scanning system is comprised of two SICK LMS111 LIDARs capable of generating 3D scans of

the environment with a range of 18 meters at 50 Hz placed front and back and two Hokuyo URG-04LX LIDAR

with 6 meter range at 10 Hz placed on the sides. In order to generate 3D environmental data, the LIDARs are

mounted on respective nodding gimbals, as seen in Figure 4. The tilt angle of the laser is measured by a high

resolution potentiometer mounted on the frame. The analog voltage is interpreted and relayed to the high level

computer via an ATmega328 microcontroller with a serial/USB interface. This microcontroller also controls a

servo motor responsible for rotating the laser scanner in a nodding fashion.
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3 Perception

3.1 Mapping and Obstacle Detection

The vehicle mapping algorithm relies on an open source implementation of 3D octree mapping called Oc-

toMap [14]. OctoMap provides a method for creating 3D occupancy grid maps from point-cloud data. The

main advantages of the OctoMap library is that it is real-time updatable, flexible and compact. The updates are

performed in a probabilistic fashion, thus helping to reduce the effect of sensor noise on the generated map. The

implementation is also flexible, as scans can be added to the map at any time, and no prior knowledge about

the boundaries of the environment are required. Finally, since the data is stored in an octree data structure with

real-time pruning, the map is stored efficiently in memory.

The map is updated using a probabilistic update rule. This implies that each occupancy cell in the environment

is assigned a probability based on the incoming point cloud. The probability that a cell n is occupied given an

incoming point cloud z1:t is given by

P (n|z1:t) =

[
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)

]−1

(1)

The term P (n|zt) is known as the inverse measurement model and determines the probability that a cell is

occupied given a certain sensor measurement. Using the log odds notation, L (n) =
(

p
1−p

)
, the map update rule

Equation. (1) (assuming an initial belief of P (n) = 0.5) can be expressed as

L (n|z1:t) = L (n|z1:t−1) + L (n|zt) (2)

Equation 2 illustrates that occupancy probability in a cell at time t is the previous belief that the cell was

occupied at time t − 1, plus the information given by the inverse measurement model at time t. Through this

update, if the probability of a cell is less than lmin, then it is classified as free (or unoccupied). If the probability

of a cell becomes greater than lmax, then it is classified as occupied. For probabilities between lmin and lmax,

the cell has an unknown state. This probabilistic update demonstrates how the mapping technique reduces the

effect of sensor noise, as multiple consistent sensor readings to a cell are required for the occupancy probability

of that cell to exceed the threshold of lmin or lmax.

The OctoMap is built using 3D pointclouds generated by the vehicle’s LIDARs and point-clouds corresponding

to white lines given by the vision system. An example of a point cloud and its resulting OctoMap is given in

Figure 5. In order to determine drivable terrain in 2D, a local OctoMap is created from the occupied cells within

a bounding box of the current vehicle location. The cell probabilities are then summed and normalized along

the columns of the local OctoMap. Columns with the highest probabilities correspond to non-drivable terrain

(obstacles), and are thresholded between pmin and pmax, where a probability greater than pmax corresponds to

an obstacle occupied in the column. Occupied columns are then simply projected onto a plane, yielding a local

2D map of drivable terrain. In this way, the 3D map is flattened to 2D using a “bird’s eye view” approach.

(a) (b)

Figure 5: Mapping of an indoor environment. (a) Point cloud generated by the tilting LIDAR. (b) Resulting

OctoMap with 10cm resolution
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3.2 Vision systems and Lane Detection

The lane detection algorithm is outlined by the flow chart in Figure. 6. Each image frame is processed to

locate pixel candidates for white lane marking. A multiband automatic thresholding method [12] is used to filter

saturation and value channels of an HSV image to derive two binary images. It iteratively computes thresholds

to maximize the separation of means for two clusters, providing robustness to changes in ambient illumination

from frame to frame. These two images are subsequently combined to derive a binary image that indicates white

pixel locations.

Figure 6: Lane detection algorithm flow chart

After white pixel thresholding, additional filtering is performed to remove pixels associated with objects. Each

column of the HSV image is scanned from the top to find the number of nongreen colored pixels. If the number

is over some threshold (tunable), white pixels in this columns would be ignored. This minimizes the error in lane

marking candidate identifications. As shown in Figure. 7, white stripes in the orange pylons in the original image

Figure 7(a) are successfully rejected in Figure 7(b) as a result of this heuristic.

(a) Original image with obstacle (b) White pixels rejection

Figure 7: Example of rejection of white stripes on pylon obstacles.

A rectangular pulse kernel in various orientations is subsequently convolved with the gray scale image to detect

line shape responses. This operation filters out white blobs that are not elongated in shape, to differentiate white

lanes from environments such as sandpits and sky. The size of the kernel determines the width of line to be

detected, and is a tuning parameter depending on the line width of the lane marking expected to be seen by the

camera. Figure. 8(b) demonstrates the image filtered by the line detection kernel.

The line image and white binary image are summed to produce a heat map, assigning each pixel a likelihood

as a part of the lane marking. Figure 8(c) contains a sample heat map from a test trial. A Random Sample

Consensus (RANSAC) algorithm [7] then attempts to fit parabolic models on continuous segments of likely pixels

in the heat map, as first proposed by formulated by the 2008 Princeton IGVC team [1]. The ability of RANSAC

to reject outlying white pixels offers robustness over a straightforward regression fit. Figure 8(d) shows the

complete lane detection results.

After finding white lanes, the inertial frame map is updated with the lane locations to aid in path planning.

To achieve this, it is assumed that the ground plane is flat and every pixel seen in an image is on the ground, this

is a valid assumption since the camera will be oriented downwards in order to reject pixels that are not part of the

ground plane.An Orthographic projection [4] is used to translate the lane markings from the perspective image

plane onto the ground plane. Figure 3.2 demonstrates the effect of orthographic projection after calibration.
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(a) White pixel binary image (b) Line shape response (c) Lane marking heat map (d) Lane detection

Figure 8: Lane Detection Algorithm steps.

(a) Original image (b) Projected image

Figure 9: Rectification of an image

4 Planning and Obstacle Avoidance

The path planning algorithm assumes that the planning and estimation problems are decoupled (i.e. estimations

of the vehicle state and environment map are available and accurate). The algorithm first uses a modified

probabilistic roadmap (PRM) planner to find a collision-free path, and then divides the path into kinematic

motion primitives by exploiting the vehicle’s ability to turn on the spot.

4.1 Modified PRM Algorithm for Unknown Environments

PRM planners [10] can efficiently capture the configuration space, C, of large and complex environments. In this

problem, C ∈ R3 corresponds to the position, x and y, and yaw, ψ, of the vehicle. In unknown environments,

the PRM planner assumes unexplored areas are obstacle free and updates the solution path as new obstacles are

detected. This algorithm, inspired by the D* algorithm [13] and Lazy Collision Checking [2], is summarized in

Algorithm 1, where Cfree is the obstacle-free subspace of C, (xd, yd) denote the desired final position, and the

function CheckCollisionPath(p) returns true if path p 6⊆ Cfree. Note that each PRM node has a variable yaw,

selected at runtime, to align the vehicle to each adjoining edge during collision checking. This ensures that the

vehicle is travelling forwards along each segment of the solution path.

Algorithm 1 Modified PRM for Unknown Environments

Select p = PRM solution path assuming unexplored areas ∈ Cfree
while x 6= xd and y 6= yd do

if CheckCollisionPath(p) then

Remove all edges 6⊆ Cfree from the PRM graph

while (x, y) and (xd, yd) are not connected do

Add additional samples to the PRM graph

end while

p = new solution path returned by A* search on the updated PRM graph

end if

end while
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4.2 Sampling Strategy and PRM Regeneration

A hybrid sampling strategy that combines uniform [10], bridge [9], and exploration samples allows the PRM plan-

ner to effectively capture the connectivity of Cfree. Uniform and bridge sampling are well established techniques

in PRM literature for sample generation in expansive and narrow regions of Cfree respectively. Exploration sam-

pling, a technique inspired by Gaussian sampling [3], improves the connectivity between Cexplored and Cunexplored
by generating sample pairs along the boundary of the explored map. The exploration sampling algorithm is given

in Algorithm 2, where s ∼ P denotes a node s sampled from a probability distribution P, U [S] is an uniform

distribution spanning space S, N [S] is zero mean Gaussian distribution spanning S with some user selected

variance, Es1,s2 is an edge connecting nodes s1 and s2, and CheckCollision(E) returns true if edge E 6⊆ Cfree.

Algorithm 2 Exploration Sampling

while valid exploration sample pair not found do

Select s1 ∼ U [C]
Select s2 ∼ U [{s ∈ C : ||s− s1|| = d, d ∼ N [R+]}]
if (s1 ∈ Cexplored and s2 ∈ Cunexplored) or (s1 ∈ Cunexplored and s2 ∈ Cexplored) then

if not CheckCollision(Es1,s2) then

Accept s1 and s2 as a valid exploration sample pair

end if

end if

end while

To preserve computational efficiency, the PRM graph is regenerated when it grows beyond an environment

dependent threshold. This is done by deleting all nodes and edges except for those that have already been

traversed. It is important to retain the traversed nodes and edges to ensure that the vehicle can return to a

previous area if needed which helps in situations such as dead ends or center islands.

4.3 Heuristic Algorithm for Improving Solution Path

PRM planners do not maximize the clearance around the solution path nor do they remove redundant segments.

The heuristic algorithm described in [5] is used to mitigate these shortcomings. The algorithm attempts to

replace each node in the path with a sample (generated within a neighborhood of that node) that has greater

obstacle clearance such that the path remains collision-free. Redundant segments are eliminated, where possible,

by connecting node i to i + 2 in the path. This process is iterated greedily to maximize the average obstacle

clearance around each node in the path.

4.4 Kinematic Motion Primitives

Traversing a piecewise linear path is inefficient since it requires the vehicle to momentarily stop and turn at the

end of each segment. Thus, the path will be divided into kinematic motion primitives using the method described

in [5]. Note that the worst case for this method will return the same piecewise linear path requiring the vehicle to

stop and turn. The method divides the path into straight and corner motions based on kinematic constraints of

the vehicle (which will be experimentally determined). The vehicle will not exceed its kinodynamic capabilities

while traversing the path as long as it doesn’t exceed the velocity bound on each motion primitive.

4.5 Decoupled Yaw with Omni Wheels

With omni wheels, the vehicle becomes holonomic and gains the ability to yaw independently while traversing

a path. This allows the vehicle to direct its sensors at objects of interest without having to stop or re-route.

Given a max yaw rate and tangential velocity, it is possible to calculate the positions at which the vehicle should

start and finish its yaw transitions to reach the target yaws. The modified path sections should be collision
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checked with the new yaw values to ensure it is still collision-free. If the commanded yaws cause a collision, then

depending on the command priority, the vehicle can either ignore the command or find a new solution path.

4.6 Path Planning Simulation Results

The simulation uses the ROS RVIZ stack for visualization and OctoMap [14] for mapping. The starting point of

the path is kept constant in these simulations to better illustrate the effects of the algorithm. In practice, the

vehicle’s latest configuration will be used as the starting point each time the algorithm needs to modify the path.

The simulation results for a skid-steer vehicle is shown in Figure 10. The solution path is indicated in yellow,

the PRM graph in purple, and the obstacles in green. There are initially no obstacles, so the path starts as

a straight line (Figure 10(a)). As obstacles are detected, the path is modified to remain collision-free (Figure

10(b)). If needed, additional samples are added to the PRM graph until a valid solution path exists (Figure

10(c)). Figure 10(d) shows the final path through the fully mapped environment.

(a) (b) (c) (d)

Figure 10: Simulation of the modified PRM algorithm in an unknown environment.

The path planning simulation results for a vehicle with omni wheels is shown in Figure 11. The purple arrows

indicate the yaw of the vehicle along the path, and the red sphere is a target object of interest. The aim is to

traverse the path while facing the target object as often as possible. Figure 11(a) shows the initial solution path

with the vehicle facing the target object at all times. In the presence of obstacles, the vehicle will no longer face

the target object unless it has a clear line of sight to it (Figure 11(b)). Even with a clear line of sight, the vehicle

will not face the target object unless it can transition to and from the required yaw (while staying on the the

path) without collisions (Figure 11(c)).

(a) (b) (c)

Figure 11: Simulation of omni wheeled skid-steer vehicle tracking a target object.

5 Estimation and Control

The planning and mapping algorithms both assume high quality information about the platform’s pose and

precise control over the platform’s position are available. Robust and computationally efficient estimation and

control systems are designed for both the skid-steer and omni-wheel versions of the vehicle to this end.
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5.1 Modelling

A comprehensive estimation and control system needs a complete system model that relates the system inputs

to the required states. Currently, only kinematic models are considered for the design to maintain computational

efficiency.

Skidsteer Model: In most cases, the two wheeled robot model is used for skidsteer vehicles. The two

wheeled robot model assumes no slippage at the wheel contacts, however, all skid steer vehicles operate on the

condition of constant slippage. As such, a model that incorporates this constant slippage [11] is employed and

presented here. The skidsteer vehicle has inputs, vr and vl which are the left and right wheel velocities, regulated

by the HDC2450 motor controllers (based on encoder feedback). The wheel velocities can be translated to a

velocity in the body x-direction, vx, and an angular velocity about the body z-axis, ωz as,

u =

[
vx

ωz

]
=

[
r(vr+vl)

r
r(vr−vl)

2c

]
(3)

where r is the radius of the wheel, and c is the wheel base of the platform. Based on the system inputs, the

position and heading of the system in the inertial frames can be derived as [11],
Ẋ

Ẏ

ψ̇

 =


cosψ xICR sinψ

sinψ −xICR cosψ

0 1


[
vx

ωz

]
(4)

where X,Y and ψ are the position and heading of the vehicle in the inertial frame and xICR is the location of

the instantaneous center of rotation resolved to the body x-axis. Setting, xICR > 0 assumes constant slippage

for the model.

Omniwheel Model: The omniwheel system allows for decoupled motion in the body x, y directions and

an angular velocity ωz about the body z axis. The omniwheel system can be considerered to have four inputs

u =
[
ω1 ω2 ω3 ω4

]T
. These can be related to motion in the body axes with the equation [6],


vx

vy

ωz

 =


1
4

1
4

1
4

1
4

− 1
4

1
4 − 1

4
1
4

− 1
4K − 1

4K − 1
4K − 1

4K



ω1

ω2

ω3

ω4

 r (5)

where K is the sum of the length l and wheelbase c of the platform, r is the radius of the wheels as before.

While the equation above relates the motion inputs to its motion states for better estimation for control the

inverse relationship is required. This can be realised using the pseudo-inverse approximation of the matrix in the

equation above as derived in [6].

5.2 Estimation

In an effort to maintain robust and accurate pose estimates, a probabilistic estimator is implemented onboard the

platform. This estimator combines known models of the plant, the system inputs and the available sensor infor-

mation (IMU and GPS) to maintain a reliable estimate of the current pose. The state of the system as required

by the planning and mapping software is chosen to be the 6-DOF pose of the robot,
[
X Y Z φ θ ψ

]
, 3D

position and roll, pitch, yaw. Based on the models derived in previous sections two process models can be used.

The skid-steer version of the vehicle has the process model as in Equation (6). Similarly, for omni wheel systems

the motion model can be defined as in Equation (7).
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Ẋ

Ẏ

Ż

φ̇

θ̇

ψ̇


=



cosψ xICR sinψ

sinψ −xICR cosψ

0 0

0 0

0 0

0 1


[
vx

ωz

]
(6)



Ẋ

Ẏ

Ż

φ̇

θ̇

ψ̇


=



cosψ − sinψ 0

sinψ cosψ 0

0 0 0

0 0 0

0 0 0

0 0 1




vx

vy

ωz

 (7)

where the inputs vx, vy and ωz are derived based on Equation (5). Note here that the 2D kinematic process

models do not provide any information about the altitude, roll and pitch of the vehicle, as such these are assumed

to have a random amount of error in the process model.

These two motion models are propagated whenever new control information is available. When new sensor

information becomes available the following measurements are incorporated into the system,

y =
[
X Y Z vx cosψ − vy sinψ vx sinψ + vy cosψ φ θ ψ

]T
(8)

The measurements above include position (including altitude) and velocity measurements from the GPS and

attitude measurements from the IMU. The above nonlinear motion and measurement models are processed

through an Extended Kalman Filter framework to maintain accurate and computationally efficient estimates of

the pose. Preliminary results onboard a skid steer vehicle are shown in Figure 12(c). This estimation system can

now provide reliable estimates of the pose even with intermittent sensor measurements.

5.3 Control

As described in Section 4, the path of the system is discretized into a series of points that the system must now

track. As before, two different control methods are derived for the omni-wheel and skid-steer versions of the

platform.

Skid-steer Control: The skid-steer platform has a set of coupled kinematic relationships between position

and heading and therefore a holistic control law that is able to operate with this coupling is required. The discrete

set of points provide a path for the platform to follow. A cross-track error ect is calculated as the perpendicular

distance between the platform and the nearest point on the required path. Similarly a yaw error eyaw is defined to

be the error in heading between the platform and the heading of the required path. Based on this parametrization

of errors, a nonlinear tracking control law is suggested and proven to be asymptotically stable by Hoffmann [8]

for kinematic vehicle plant models with coupling between the heading position (such as in Ackermann steering).

This control law can be summarized as,

ωz = eyaw + tan−1

(
kect
vx

)
(9)

where ωz is the steering control input, vx is the required forward velocity and k is a tunable controller gain. A

simulation of this controller for a section of the path is shown in Figure 12(a).

Omniwheel Control: The omni-wheel system has a decoupled set of dynamics where each individual state

can be regulated separately. The controller is designed to regulate a positive velocity tangent to the path
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prescribed by the path planner, a crosstrack error perpendicular to the path prescribed by the path planner, and

a desired heading. These requirements can be summarized into a control law as follows,

utan = c (10)

uper = −kpperect − kdper ˙ect (11)

uω = −kpωeyaw − kdω ˙eyaw (12)

where, c is the required positive velocity, ect and eyaw is the crosstrack and yaw error and kpper, k
d
per, kpω and

kpω are tunable PD gains. The three control requirements utan, uper and uω can be translated to required body

velocities using the inverse rotation matrix between the body frame and the path frame.
vrx

vry

ωr
z

 =


cos eyaw sin eyaw 0

− sin eyaw cos eyaw 0

0 0 1



utan

uper

uω

 (13)

The above body velocities can be translated to required wheel velocities using the pseudo-inverse of the

kinematic relationship in Equation (5). Again, a simulation of this control law on the described model is shown

in Figure 12(b)
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Figure 12: Path Control Results

6 Summary

Indrik unmanned ground vehicle is a rugged workhorse designed for use in a variety of environments. Featuring an

independent suspension, all wheel electric propulsion, drive-by-wire capabilities, 6 hours of LiPo battery power,

the vehicle can carry payloads of upto 300lbs for long distances, over challenging terrain be it dirt, mud, water,

gravel, rocks or snow. It can climb ramps with inclines of upto 35 degrees. Taking advantage of the omni-

wheel directional movement, the novel controller provides an extra degree of freedom for the robots movement.

Fusing sensor data from multiple LIDARs and cameras placed around the robot, IMU, and wheel encoders, the

robot is capable of detecting obstacles upto a range of 10m and reacting within 50ms of obstacle detection. It

simultaneously localizes itself and maps its environment using advanced estimation and control algorithms. The

novel PRM path planner is able to ensure optimized trajectory at a maximum speed of 10mph through randomly

placed obstacles, ensuring an accuracy of +/- 60cm of arrival at navigation waypoints. The innovative design

solutions presented in this paper ensure a competitive entry for the 2011 Intelligent Ground Vehicle Competition

for the University of Waterloo team.
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